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Abstract

Large motion poses a critical challenge in Video Frame
Interpolation (VFI) task. Existing methods are often con-
strained by limited receptive fields, resulting in sub-optimal
performance when handling scenarios with large motion. In
this paper, we introduce a new pipeline for VFI, which can
effectively integrate global-level information to alleviate is-
sues associated with large motion. Specifically, we first
estimate a pair of initial intermediate flows using a high-
resolution feature map for extracting local details. Then, we
incorporate a sparse global matching branch to compen-
sate for flow estimation, which consists of identifying flaws
in initial flows and generating sparse flow compensation
with a global receptive field. Finally, we adaptively merge
the initial flow estimation with global flow compensation,
yielding a more accurate intermediate flow. To evaluate the
effectiveness of our method in handling large motion, we
carefully curate a more challenging subset from commonly
used benchmarks. Our method demonstrates the state-of-
the-art performance on these VFI subsets with large motion.

1. Introduction

Video Frame Interpolation (VFI) seeks to generate the inter-
mediate frame from a given pair of inference frames, which
has received increasing attention. It has various real-life ap-
plications, such as creating slow motion videos [3, 10, 13],
video compression [12, 33] and novel view synthesis [1, 7,
38]. Currently, flow-based algorithms occupy a prominent
position [9, 17, 18, 26, 28, 30, 37] in VFI task, where the
flow from the target frame to the input frames, namely, in-
termediate flow, is explicitly estimated for warping input
frames to the target frame.

Nevertheless, existing optical flow [11, 32, 34] algo-
rithms cannot be directly applied to estimate intermedi-
ate flows due to the absence of the target frame. To
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Figure 1. (a) Our framework without sparse global match-
ing, pretrained on small motion dataset, for capturing local details.
(b) Our framework with sparse global matching, fine-tuned on
large motion dataset, for capturing global large motion. (c) Key
components in our algorithm, illustrating the effect of our sparse
global matching branch. (Using Ours-1/4-Points, from Table 1.)

address this, many algorithms first estimate the bidirec-
tional flow between two input frames and then generate in-
termediate optical flows using various flow reversal tech-
niques [13, 15, 19, 24, 29, 35, 39]. Alternatively, re-
cent algorithms directly estimate the intermediate flow with
proper supervision [9, 17, 37] and achieve improved per-
formance on datasets where small-to-medium motions are
prevalent [27].

However, real-world video frame interpolation encoun-
ters various complex challenges, with the problem of han-
dling large motion being particularly prominent. In scenar-
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ios characterized by large motion, the correspondence of
objects between frames is hard to locate due to the large
pixel shifting. Many works have been proposed to alle-
viate this problem. For example, XVFI [29] addressed
this by creating an extreme 4K training dataset and a scal-
able framework. However, its performance improvement
is limited when applied to small motion scenarios [25].
FILM [27] introduced scale-agnostic features and a weight-
sharing approach to improve model generalization across
different motion scales. In fact, due to its limited recep-
tive field, the model’s depth can become excessively deep
when dealing with large motion. This increases computa-
tional complexity and falls short in handling fast-moving
small objects.

In this paper, we introduce a sparse global matching
pipeline to specifically handle the challenges posed by large
motion in the VFI task, by effectively integrating global-
level information into intermediate flow estimation. Our
VFI method establishes sparse global correspondences be-
tween input frames using a global receptive field and takes
a two-step strategy to compensate for the intermediate flow
estimation. Specifically, as shown in Figure 1 (a - b), our
method begins with an initial estimation of a pair of in-
termediate flows using a relatively high-resolution feature
map. Following this initial estimation, our approach incor-
porates a sparse global matching branch to locate potential
error in the flow estimation results, and then produce flow
residual to provide an effective remedy for capturing large
motion.

To be specific, in our sparse global matching branch, we
build a difference map to pinpoint the flaws in initial in-
termediate flow estimations. Concentrating on these defec-
tive areas, our approach employs sparse global matching to
establish global correspondences between two adjacent in-
put frames, specifically at these sparsely targeted locations.
Subsequently, we convert this bidirectional sparse flow cor-
respondence into intermediate flow compensation. Finally,
we employ a flow merging block to adaptively merge the
initial intermediate flows and flow compensation, thereby
effectively combining the local details with the global corre-
lation. As shown in Figure 1 (c), our sparse global matching
branch can effectively locate the error regions and rectify
the flaws in the initial intermediate flow estimation, yielding
a significantly enhanced synthesized intermediate frame.

In order to benchmark the effectiveness of our sparse
global matching module on handling large motion, we
carefully analyze motion magnitude and sufficiency within
existing benchmarks, X-Test [29], Xiph [22] and SNU-
FILM [4]. In our analysis, we utilize the motion sufficiency
filtering method described in [1], emphasizing the mini-
mum of the top 5% of each pixel’s flow magnitude as the
key indicator of large motion sufficiency. In the end, we
carefully curate the most challenging subsets for large mo-

tion frame interpolation evaluation. In the most challeng-
ing testing conditions, our proposed method demonstrates
a substantial improvement in terms of PSNR, enhancing
it by 0.66 dB while correcting half of the points in initial
flow estimation. Furthermore, even with the correction of
just 1/8 points, we still observe a notable increase of 0.48
dB. Notably, our approach establishes a new state-of-the-art
performance benchmark in these exceptionally challenging
scenarios. In summary, our main contributions include:
• We introduce a sparse global matching algorithm tailored

to effectively capture large motion.
• We designed an effective two-step framework for captur-

ing large motion. First, by estimating initial intermedi-
ate flows to extract the local details, then targets and cor-
rects the detected flaws through sparse global matching at
sparsely targeted defective points.

• Our models demonstrate state-of-the-art performance on
the most challenging subset of the commonly used large
motion benchmark, namely, X-Test-L, Xiph-L, SNU-
FILM-L hard and extreme.

2. Related Work

2.1. Flow-Based Video Frame Interpolation

Flow-based algorithms for video frame interpolation focus
on estimating intermediate flows. These flows enable the
model to either forward warp or backward warp the input
frames to the target frame. Some algorithms first com-
pute bidirectional flows between two input frames and ap-
ply different flow reversal techniques to obtain intermediate
flows [24, 29, 35], while the others directly estimate inter-
mediate flows [9, 17, 37].

However, flow reversal techniques may introduce arti-
facts to intermediate flows, which can harm the details
of the intermediate flows, causing misalignment [13] or
holes [35]. Direct estimation of intermediate flows is also
restricted by the model design, usually has a limited percep-
tive field [9, 37], and lacks robustness on large motion.

Addressing the issue of large motion in video frame in-
terpolation, FILM [27] adopts a coarse-to-fine approach
and shares weights between layers. It also trains on data
with varied motion magnitudes, enabling it to learn to han-
dle large motions. AMT [18] uses the RAFT-like struc-
ture to construct an all-pair correlation map and locally re-
fines the intermediate flow afterward. BiFormer [26] em-
ploys a global feature extractor to extract global features
and build local bilateral correlation maps. However, due
to the high resolution of the VFI task, giving the model a
genuine global receptive field is challenging.

In contrast, our work uses local features to estimate the
intermediate flows and global features to sparsely generate
bidirectional flow compensation by global matching. We
then adaptively merge the flows and flow compensation to
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Figure 2. Overview of our proposed structure. First, local features are extracted by a local feature extractor for flow estimation
F̃t→0, F̃t→1. Then, our sparse global matching branch locates the flaws by constructing difference maps D0, D1. Next, we perform sparse
global matching using global features extracted by a global feature extractor. Finally, after shifting global correspondences f0→1, f1→0

to intermediate flow compensation ft→1, ft→0, we adaptively merge F̃t→0, F̃t→1 with ft→1, ft→0 and adopts a flow refine in a residual
manner for interpolating the intermediate frame.

obtain the final intermediate flow with both global informa-
tion and local details.

2.2. Transformer

Transformers have gained widespread popularity across
various computer vision tasks [2, 6, 20, 40], demonstrat-
ing impressive feature extraction capabilities. Recently,
Transformer-based backbone has already been introduced
to solve VFI task [16, 22, 28, 37]. VFIFormer [21] uses
cross-scale window-based attention. EMA-VFI [37] uses
Inter-frame Attention to extract appearance and motion fea-
tures using the same similarity matrix. BiFormer [26]
adopts pretrained Twins architecture [5] for global feature
extraction and builds local bilateral correlation cost volume.
However, when handling large motion, these methods are
more or less restricted by their local receptive field. There-
fore, we propose a two-step strategy: employing a hybrid
Transformer and CNN-based backbone for initial flow esti-
mation, followed by a sparse global matching block utiliz-
ing a global receptive field.

2.3. Global Matching

Global matching is extensively studied in local feature
matching tasks. LoFTR [31] replaces the traditional dense
matching method, using cost volume to search for corre-
spondence, with self and cross attention layers in Trans-
former. COTR [14] takes a different approach by formu-
lating the correspondence problem as a functional map-
ping and utilizing a Transformer as the function to query
the points of interest. For dense matching, GMFlow [34]
adopted Transformer block to extract strong discriminative
features to build a global matching map. In VFI tasks, not
every part of the image requires dense global matching. Our
sparse global matching strategy, on the other hand, specifi-
cally targets and corrects the defective areas of the flows.

3. Method

Given a pair of RGB frames I0, I1, and a timestep t, we
need to synthesize an intermediate frame It. We illustrate
our overall model pipeline in Figure 2.

Our method consists of a local feature branch and a
sparse global matching branch. The local feature branch
is responsible for estimating the initial intermediate flows,
namely F̃t→0 and F̃t→1. In the sparse global matching
branch, we focus on the defective areas of F̃t→0, F̃t→1, and
perform sparse global matching to obtain flow compensa-
tion, ft→0 and ft→1. Then we adaptively merge F̃t→0 and
F̃t→1 with ft→0 and ft→1 by our flow merge block, to ob-
tain more accurate intermediate flows, Ft→0, Ft→1. Finally,
after a few flow refine blocks, we use this pair of intermedi-
ate flows to synthesize the intermediate frame Ît.

In the following, we first introduce each component in
our local feature branch briefly in Section 3.1. From Sec-
tion 3.2 and onward, we delve into a detailed discussion of
our sparse global matching branch.

3.1. Local Feature Branch

As shown in Figure 2, our local feature branch consists of
three parts, namely, the local feature extractor, the flow es-
timation block, and the RefineNet [9]. We draw inspiration
from RIFE [9] and EMA-VFI [37], while retaining certain
distinctive aspects. We now introduce them sequentially.
Local Feature Extractor. EMA-VFI [37] has already ver-
ified the effectness of CNN and Transformer hybrid struc-
ture. We follow its design and keep our deepest feature res-
olution stays at H/8×W/8 scale, instead of H/16×W/16
in EMA-VFI. Furthermore, we simplified the specially de-
signed Transformer structure in EMA-VFI to simple cross
attention to extract inter-frame appearance features at a
lower computation cost.
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Flow Estimation. We use the extracted appearance feature
and input frames I0, I1 ∈ R3×H×W to directly estimate in-
termediate flows Ft→0, Ft→1, along with a fusion map O, in
a coarse-to-fine manner. This is achieved by several layers
of CNN block, inspired by the intuitive design of RIFE [9]
and EMA-VFI [37]. Then, the target frame can be gener-
ated by:

Ît = O ⊙
←−
W (I0, Ft→0) + (1−O)⊙

←−
W (I1, Ft→1) , (1)

where
←−
W is image backward warping operation, ⊙ is

Hadamard product operator.
Flow Refine. We share the same U-net-shaped network
with RIFE to refine the synthesized frame Ît. More details
can be found in Appendix A.

3.2. Locate Flaws in Flows: Difference Map

Due to the limited receptive field of local feature branch, the
estimated initial bidirectional flows, F̃t→0 and F̃t→1, may
be relatively coarse. Consequently, it is necessary to iden-
tify the flaws in F̃t→0 and F̃t→1. Therefore, we construct
the difference map D0 and D1 to check the correctness of
F̃t→0 and F̃t→1, by using both of the input frames I0 and I1
as ground truth reference. The values in the difference maps
D0 and D1 serve as indicators of the likelihood of error
in flow estimation, with higher values suggesting a greater
probability of inaccuracies.

In particular, we first use F̃t→0 to backward warp I0 to
Ĩt, then use F̃t→1 to forward warp Ĩt to Ĩ1. And we compare
the Ĩ1 and input frame I1 by doing summation over RGB
channels after subtraction to obtain difference map D̃0→1.

Ĩ1 =
−→
W

(←−
W

(
I0, F̃t→0

)
, F̃t→1

)
, (2)

D̃0→1 =
∑
RGB

|I1 − Ĩ1|, (3)

where
←−
W is backward warp,

−→
W is forward warp.

Through the combination of backward warp and forward
warp, we get an initial difference map D̃0→1. Currently,
the flaws in D̃0→1 are caused by two reasons, the first rea-
son is due to the flaws in our coarse flow estimation, F̃t→0,
F̃t→1. The second reason is that even if F̃t→0, F̃t→1 were
perfectly accurate, occlusions and cropping would still oc-
cur inevitably, i.e. some existing pixels in I0 disappearing
in I1, creating incorrect pixel mappings and holes in the
warped image.

To filter out the second cause of flaws, we create a map
full of ones, and repeat the above warping process to obtain
a 0/1 mask, Mholes

0→1 . The positions in mask Mholes
0→1 where

the element becomes 0 correspond to the potential hole ar-
eas in the warped image Ĩ1.

Then, we can multiply this map Mholes
0→1 with our initial

difference map D̃0→1 to filter out the potential holes caused
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Figure 3. Large motion dataset benchmark analysis. Top:
Whole dataset. Below: Keeping the most challenging half of Xiph
and SNU-FILM. Four charts share the same legend.

by occlusion and cropping, and obtain D0→1, focusing on
the flaws caused by inaccurate intermediate flow estimation.

D0→1 = Mholes
0→1 ⊙ D̃0→1. (4)

As a result, D0→1 enables us to identify the misaligned
regions in Ĩ1 that are caused solely by the flaws in the es-
timated flows F̃t→0, F̃t→1. Furthermore, we reverse the
previous warping combination to find the underlying source
points responsible for these misalignments in Ĩ1.

D0 =
−→
W

(←−
W

(
D0→1, F̃t→1

)
, F̃t→0

)
. (5)

Difference map D0 illustrates the extent to which each
point in I0 leads to the misalignment in Ĩ1. To address this,
it is essential to prioritize the regions with higher values in
D0. These regions indicate the points that exacerbate sig-
nificant misalignment. Difference map D1 can be produced
symmetrically.

3.3. Sparse Global Matching

To emphasize the region with higher values in D0 and D1,
we can select the top-k points out of D0, D1 and do global
matching for those points to provide more accurate match-
ing flow f0→1 and f1→0, for preparing the flow compensa-
tion ft→1 and ft→1.

Sparse global matching allows the selected points in I0
to have a global receptive field on I1. We adopt the pre-
trained global feature extractor from GMFlow [34] to gen-
erate discriminative global features Ai

0, A
i
1 ∈ R(

H

2i
·W
2i
)×C ,

where C is the number of feature channels. We construct a
sparse feature map ai0 ∈ RK×C according to top-k indices
selected from D0. The corresponding area of Ai

0, A
i
1 should

have higher similarity, and the same intuition also applies to
ai0 and Ai

1. Therefore, we can construct a similarity matrix
S0→1 ∈ K ×

(
H
2i ·

W
2i

)
:

S0→1 = Softmax

(
ai
0A

i
1√

C

)
. (6)
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Then we create a coordinate map B ∈ R(
H

2i
·W
2i
)×2. Using

top-k indices selected from D0, we extract the correspond-
ing points from the coordinate map B to form a sparse co-
ordinate map b0 ∈ RK×2. We use the product between
similarity matrix S0→1 and b0 to represent the estimated po-
sition in I1 for selected k points. Therefore, the subtraction
between the previous product S0→1b0 and b0 can represent
the flow for those points, namely f0→1:

f̃0→1 = S0→1b0 − b0. (7)

Thus, f̃0→1 is obtained in a global matching manner, mak-
ing it more capable of capturing large motions. Finally, we
reuse the top-k indices from D0 to fill f̃0→1 ∈ RK×2 to
f0→1 ∈ R

H

2i
×W

2i
×2 with zero. f1→0 can be obtained sym-

metrically.

3.4. Flow Shifting

The goal of our sparse global matching branch is to acquire
sparse flow compensation ft→0 and ft→1 to improve the
estimated intermediate flows, F̃t→0, F̃t→1, with large mo-
tion capturing ability. Next, we shift f0→1, f1→0 to ft→1,
ft→0 by flow shifting, which can help mitigate the coordi-
nate system mismatch.

We intercept a (1 − t) proportion of f0→1 and shift this
(1 − t) proportion along the remaining t proportion of the
flow f0→1. Through this shifting operation, we can obtain
ft→1, and the shifting operation is performed by forward
warping:

ft→1 =
−→
W ((1− t)f0→1, tf0→1) , (8)

ft→0 =
−→
W (tf1→0, (1− t)f1→0) . (9)

Note that ft→1 is flow shifted by f0→1 and ft→0 is flow
shifted by f1→0, we also list the ft→0 in Equation (9) for
clarity.

After the forward warping process, the number of
sparsely chosen points will potentially change, and we will
again choose the top-k points with the least occlusion pos-
sibility.

Instead of using the estimated target frame Ĩt and input
frames I0, I1 to perform global matching and obtain inter-
mediate flow compensation ft→0 and ft→1, we use global
matching between I0, I1 only and perform flow shift. The
reason is that Ĩt synthesized by F̃t→0 and F̃t→1 is not re-
liable. Since we aim to minimize accumulated propagation
errors, we endeavor to minimize the usage of intermediate
results wherever possible.

3.5. Flow Merge Block

If we directly replace F̃t→0 and F̃t→1 with the flow com-
pensation ft→0 and ft→1, the resulting flow may lack
smoothness. In addition, the flow compensation ft→0 and

ft→1 can also make mistakes. Therefore, we designed a
flow merge blockM to adaptively merge F̃t→0 and ft→0,
as well as F̃t→1 and ft→1:

F̂t→0 =M(F̃t→0, ft→0), (10)

F̂t→1 =M(F̃t→1, ft→1). (11)

Inspired by the convex sampling in RAFT [32], we take
the F̂t→0 at each pixel to be the convex combination of
R × R neighbors of F̃t→0 and R × R neighbors of ft→0,
where R is the neighborhood range. We use two convo-
lutional layers to predict a 2 × R2 × H

2i ×
W
2i weight as-

signment, and apply softmax of the 2 × R2 neighborhood
to obtain masks [Wmain,Wsgm], where Wmain,Wsgm ∈
RR2× H

2i
×W

2i . Wmain stands for the weight for the local
feature branch flow estimations, and Wsgm stands for the
weight for sparse global matching block flow compensa-
tion. Finally, the flow merge block outputs the F̂t→0, ob-
tained by taking weighted sum over the F̃t→0 and ft→0

neighborhood.

4. Large Motion VFI Benchmark

To better illustrate our algorithm’s effectiveness in handling
large motions, we analyzed several widely used large mo-
tion datasets, namely, SNU-FILM extreme and hard [4],
Xiph [22], and X-Test [29]. We utilized RAFT [32] to esti-
mate optical flow between input frames as evidence, allow-
ing for a detailed assessment of motion magnitudes.

According to Figure 3a, SNU-FILM and Xiph’s mean
motion magnitude is much lower than X-Test’s. For exam-
ple, we can see that about 60% of SNU-FILM test cases’
mean motion magnitude is below 15, while Xiph has about
40% test cases below 30.

In addition, we also refer to the criterion in [1] for as-
sessing motion sufficiency, requiring at least 10% of each
pixel’s flow to have a magnitude of at least 8 pixels within
a 270 × 270 resolution. We adjusted this criterion by low-
ering the percentage threshold to 5% while simultaneously
increasing the required magnitude to account for the larger
resolution of our input frames. This adjusted criterion,
representing the minimum magnitude of the top 5% pixel
flows, forms the basis for our proportion ranking of the
benchmark datasets in Figure 3b.

As depicted in the cumulative distribution chart Fig-
ure 3b, we found that over 50% of X-Test have at least 5%
of each pixel’s flow with a magnitude of at least 150 pixels.
In contrast, Xiph [22] and SNU-FILM [4] contain fewer
large motion pixels. Consequently, we focused our evalua-
tion on the most challenging half of these benchmarks to as-
sess our algorithm’s performance improvements in handling
genuinely large motion data, with details in Section 5.2.
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Table 1. Quantitative evaluation (PSNR/SSIM) among different challenging benchmarks (see Section 4). The best results and the
second best results in each column are marked in red and blue respectively. Ours-1/N Points means that we sparsely select 1/N points of
the initial intermediate flows estimation to perform global matching by the evidence provided by difference map D0, D1. “OOM” denotes
the out-of-memory issue when evaluating on an NVIDIA V100-32G GPU.

X-Test-L SNU-FILM-L Xiph-L

2K 4K hard extreme 2K 4K

XVFI [29] 29.82/0.8951 29.02/0.8866 27.58/0.9095 22.99/0.8260 29.17/0.8449 28.09/0.7889
FILM [27] 30.08/0.8941 OOM 28.35/0.9156 23.06/0.8247 29.89/0.8533 27.11/0.7699
BiFormer [26] 30.32/0.9067 30.11/0.9070 28.18/0.9154 23.55/0.8383 29.61/0.8541 28.89/0.8133
RIFE [9] 29.87/0.8805 28.98/0.8756 28.19/0.9172 22.84/0.8230 30.18/0.8633 28.07/0.7982
EMA-VFI-small [37] 29.51/0.8775 28.60/0.8733 28.57/0.9189 23.18/0.8292 30.54/0.8718 28.40/0.8109

Ours-local-branch 30.39/0.8946 29.25/0.8861 28.73/0.9207 23.19/0.8301 30.89/0.8745 28.59/0.8115
Ours-1/8-Points 30.83/0.9022 29.73/0.8928 28.82/0.9208 23.54/0.8355 30.88/0.8749 28.90/0.8151
Ours-1/4-Points 30.88/0.9043 29.78/0.8948 28.86/0.9212 23.58/0.8368 30.89/0.8751 29.15/0.8169
Ours-1/2-Points 30.99/0.9072 29.91/0.8972 28.88/0.9216 23.62/0.8377 30.93/0.8755 29.25/0.8180

5. Experiments

5.1. Implementation Detail

Training Datasets. We use two training datasets,
Vimeo90K [36] for pretraining on small-to-medium motion
and X4K1000FPS (X-Train) [29] for finetuning on large
motion. Vimeo90K contains 51,312 triplets with a resolu-
tion of 448x256 for training. It has an average motion mag-
nitude between 1 to 8 pixels [36]. X4K1000FPS (X-Train)
contains 4,408 clips with a resolution of 768x768, each clip
has 65 consecutive frames.
Local Feature Branch Training. We first train our model
framework without the sparse global matching branch on
Vimeo90K. We crop each training instance to 256x256
patches and perform random flip, time reversal, and ran-
dom rotation augmentation, following [9, 37]. The training
batch size is set to 32. We use AdamW as our optimizer
with β1 = 0.9, β2 = 0.999 and weight decay 1e−4. Af-
ter 2,000 warmup steps, we gradually increase the learning
rate to 2e−4, then use cosine annealing for 480k steps (300
epochs) to reduce the learning rate from 2e−4 to 2e−5. We
follow the training loss design of [9, 37] for both training
and finetuning, which is included in Appendix B.
Sparse Global Branch Finetuning. We load our pre-
trained framework, and a global feature extractor from GM-
Flow [34], operating on i = 3 in Equation (6). Then we
integrate our sparse global matching branch into the frame-
work, setting the sparsity ratio, i.e. 1/8, 1/4, 1/2, and fine-
tuning the sparse global matching block on X-Train. When
fine-tuning, we freeze the pretrained framework and the
global feature extractor. We crop 512 × 512 patches from
the original training image, and random resize the input im-
ages with 50% probability to remain the 512 × 512 size,
25% probability to downscale to 256 × 256 size and 25%
probability to 128 × 128 size. We apply random flipping

augmentation, following [29]. The batch size, learning rate
and optimizer are the same as our local feature branch, ex-
cept that warmup steps are set to 1k steps, and the total steps
are set to 13.7k (100 epochs). The parameter freezing and
random rescaling are for preserving the model’s ability to
capture small motion details to the greatest extent possible.

5.2. Test Dataset

The proposed algorithm is designed for capturing large mo-
tions. Therefore, we test our model’s performance on the
most challenging subset of the commonly used large motion
benchmark, described in Section 4. We used PSNR (Peak
Signal-to-Noise Ratio) and SSIM (Structural Similarity In-
dex) as evaluation metric.
X4K1000FPS (X-Test) [29] is a 4K resolution benchmark,
with 1000fps high frame rate. X-Test contains 15 clips of 33
successive 4K frames extracted from videos with 1000fps.
We have selected X-Test, specifically with the largest tem-
poral gap, naming X-Test-L, as our primary benchmark for
evaluating large motion scenarios. We choose the 0th and
32nd frames as input and evaluate the quality of the synthe-
sized 16th output frame. Our testing procedure follows [8]
to provide both 4K and downsampled 2K resolution results.
SNU-FILM [4] is a widely-used VFI benchmark, with
1280x720 resolution. It has four different difficulty settings
according to the temporal gap between two input frames,
each with 310 triplets for evaluation. The larger the tempo-
ral gap, the more challenging this benchmark becomes. We
test our model on the most challenging half of the SNU-
FILM hard and extreme, naming SNU-FILM-L, with 155
triplets each. In the meantime, we also provide the perfor-
mance on the ‘easy’ and ‘medium’ settings on the whole
dataset in Table 2 to show our model’s capability in han-
dling small-to-medium motions.
Xiph [22] is a 4K dataset with 8 scenes, each with 100 con-

6



secutive frames, extracted from 60fps videos. While it is
often denoted as a benchmark for evaluating large motion,
it does not match the level of difficulty exhibited by the X-
Test. Therefore, we build this benchmark by doubling the
input temporal gap and keeping the most challenging half of
the dataset, naming Xiph-L, resulting in 192 test instances.
By downsampling and center-cropping, we obtain ‘Xiph-L-
2K’ and ‘Xiph-L-4K’ results, following [23].

5.3. Comparison with Previous Methods

To fully inspect our model’s capacity on large motion,
we evaluate our model on the aforementioned large mo-
tion datasets benchmarks and give our analysis compared
results with recent VFI approaches, including ones de-
signed for large motion, such as XVFI [29], FILM [27],
BiFormer [26], and ones that performed well on commonly
used datasets but not designed for large motion, namely,
RIFE [9], EMA-VFI [37].

As shown in Table 1, the performance of our local feature
branch, without finetuned on X-Train, has already surpassed
most methods. We attribute this to the capacity of CNN
and Transformer hybrid framework and high feature resolu-
tion (H/8×W/8). But without the sparse global matching
block, our results are not comparable to BiFormer in SNU-
FILM-L extreme, Xiph-L-4K and XVFI in X-Test-L-4K.

After we incorporate the sparse global matching branch
and finetuned on X-Train, our performance on large motion
benchmarks are boosted. When we only sparsely select 1/8
of the points in initial flow estimation by the guidance of
difference map D0, D1, our performance improved 0.44dB
on X-Test-L-2K and 0.48dB on X-Test-L-4K in terms of
PSNR. With more points introduced to be compensated,
the performance can be potentially improved by 0.6dB and
0.66dB on X-Test-L-2K and X-Test-L-4K respectively.
Small-to-medium Motion Benchmark Performance.
From the data presented in Table 2, we observe that our re-
sults remain consistent with those in small-to-medium sce-
narios, and they are comparable to a SOTA algorithm, VFI-
Former [21], on these benchmarks. This suggests that our
local feature branch already achieves satisfactory results,
and introducing our sparse global matching branch has a
limited negative impact on the overall performance.

For qualitative results, we also give the visual compar-
isons between our method and previous VFI methods in
Figure 4. Four variants of our method lies inside the red
frame. For fair comparison, ‘Local Branch (ft.)’ is also fine-
tuned on X-Test, with Flow Refine Block in Figure 2, but
without sparse global matching modules. In blue frames,
our global compensation branch can fix the unmatched ar-
eas with large motion, yielding better visual effect than the
‘Local Branch (ft.)’ model. And with more points added
into the sparse global matching block, the visual effect be-
comes better. When compared to other methods, our model

Table 2. Performance on small-to-medium benchmarks, SNU-
FILM easy and medium.

SNU-FILM

easy medium

PSNR SSIM PSNR SSIM

VFIFormer [21] 40.13 0.9907 36.09 0.9799
Local Branch (ft.) 40.15 0.9907 36.07 0.9795
1/8 Points 40.15 0.9907 36.07 0.9795
1/4 Points 40.14 0.9906 36.05 0.9795
1/2 Points 40.15 0.9907 36.05 0.9795

Table 3. Comparison of finetuning with different settings. Lo-
cal Branch (ft.) contains no global matching.

X-Test-L-2K X-Test-L-4K

PSNR SSIM PSNR SSIM

Local Branch (ft.) 30.58 0.8977 29.44 0.8895
1/8 Points 30.83 0.9022 29.73 0.8928
1/4 Points 30.88 0.9043 29.78 0.8948
1/2 Points 30.99 0.9072 29.91 0.8972

Full Global Matching 31.03 0.9074 29.95 0.8974

can preserve both the small details and large motion well.

5.4. Ablation Study

In this section, we ablate the effect of our key component,
sparse global matching pipeline fintuning, difference map
generation in Section 3.2, and merge block in Section 3.5.
Sparse Global Matching. To demonstrate that the pri-
mary source of our performance improvements comes from
the sparse global matching branch rather than the fine-
tuning process alone, we constructed a Local Branch (ft.)
model, incorporating the learnable Flow Refine module (as
depicted in Figure 2), to finetune on the X-Train dataset.
Our results indicate that while fine-tuning on a large mo-
tion dataset can enhance model performance in challenging
scenarios with large motion, global matching consistently
outperforms it. Furthermore, we present a comprehensive
overview of the global matching performance in Table 3.
It is evident that as more points are selected, performance
reaches saturation, because not every point needs a global
receptive field.
Difference Map. Our sparse global matching algorithm is
guided by difference map, D0 and D1, which can help us
identify flaws in the initial estimation of intermediate flows.
We then select the top-k defective points to correct them. To
evaluate the effectiveness of the difference map guidance,
we conducted a random sampling strategy to replace the
map generation and top-k sampling. The results presented
in Table 4 demonstrate that selecting random positions for
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Figure 4. Visual comparison with different methods, instances selected from X-Test-L [29]. We provide the optical flow magnitude on
the left, measured by RAFT [32]. Four sparsity setting of our methods lies in the red frame. Blue frames places a greater emphasis on
demonstrating large motion, while green frames is more inclined to demonstrate the effect on local details. Best viewed in zoom.

Table 4. Comparison on random sampling k points between
generating difference map and sampling top-k points.

X-Test-L-2K X-Test-L-4K

PSNR SSIM PSNR SSIM

Ours-1/2-top-k 30.99 0.9072 29.91 0.8972
Ours-1/4-top-k 30.88 0.9043 29.78 0.8948
Ours-1/8-top-k 30.83 0.9022 29.73 0.8928

Local Branch (ft.) 30.58 0.8977 29.44 0.8895

Ours-1/2-random 30.89 0.9057 29.86 0.8967
Ours-1/4-random 30.67 0.9014 29.55 0.8923
Ours-1/8-random 30.55 0.8992 29.47 0.8893

correction is not as effective as choosing the top-k defec-
tive points from the difference map. When dealing with
sparse points, random sampling can even decrease accuracy
by replacing correct flow with an inaccurate flow compen-
sation. As the number of points increases, this gap narrows.
Nevertheless, it is still evident that selecting top-k on the
difference map outperforms random sampling.
Flow Merge. To show the effectiveness of our flow merge
block, we remove the merge block and directly apply the
sparse flow compensation patches ft→0 and ft→1 on F̃t→0

and F̃t→1, respectively. From Table 5, we can see that after
removing the merge block, the obtained results still exhibit
slightly higher performance than the fine-tuned local branch
model, indicating the effectiveness of our flow compensa-
tion patches ft→0 and ft→1. However, it is noteworthy that
as we involve more points in the flow compensation, the
improvement in results becomes negligible and even falls

Table 5. Results of our structure with or w/o merge block.

Merge Block X-Test-L-2K X-Test-L-4K

PSNR SSIM PSNR SSIM

Local Branch (ft.) × 30.58 0.8977 29.44 0.8895
Local Branch (ft.)

√
30.55 0.8971 29.44 0.8889

1/8 Points
√

30.83 0.9022 29.73 0.8995

1/2 Points × 30.75 0.9025 29.69 0.8936
1/4 Points × 30.77 0.9014 29.70 0.8924
1/8 Points × 30.75 0.8992 29.64 0.8910

short of only using 1/8 points, highlighting the necessity of
our merge block.

6. Conclusion
In this paper we have presented a sparse global match-
ing algorithm designed to effectively address the challenges
posed by large motion in video frame interpolation. We
establish a framework that extracts local features for inter-
mediate flow estimation. Then we target the flaws in the
initial flow estimation and perform sparse global match-
ing to produce sparse flow compensation across a global
receptive field. By adaptively merging initial intermediate
flow estimation with sparse global matching flow compen-
sation, we achieve state-of-the-art performance on the most
challenging subset of commonly used large motion datasets
while keeping the performance on small-to-medium motion
benchmark.
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A. Local Feature Branch Model Structure
A.1. Local Feature Extractor

The structure of our local feature extractor is illustrated in
Figure A5. As mentioned in Section 3.1, we adopt a CNN
and Transformer hybrid structure for local feature extrac-
tion. This design diverges from that of EMA-VFI[37] by
reducing the network depth. Furthermore, to enhance dis-
criminability within local windows, we incorporate sine-
cosine positional embeddings before the windowed cross-
attention operation.

A.2. Flow Estimation

The Flow Estimation Structure, depicted in Figure 1, con-
sists of two sequential Flow Estimation blocks, as shown in
Figure A6. These two blocks are not identical. The first
block, detailed in Figure A6 takes input frames I0, I1 ∈
H ×W × 3 and local features a30, a

3
1 ∈ H/8×W/8× C3

as input. Its output includes the initial intermediate flow
estimations F̃t→0, F̃t→1, along with the initial fusion map
M̃ .

When pretraining on Vimeo-90K, F̃t→0, F̃t→1 and M̃
are directly fed into the second block, along with warped
images I0→t, I1→t and the finer local features a20, a

2
1 ∈

H/4 × W/4 × C2. In the stages of finetuning and infer-
ence, however, F̃t→0, F̃t→1 and M̃ are processed by the
sparse global matching block for correction, resulting in re-
fined flow estimations Ft→0, Ft→1 and an updated fusion
map M , which are then input to the second block with
I0→t, I1→t and a20, a

2
1.

A.3. Refine Net

We follow a similar design in RIFE[9]. We use Context Net
to first extract the low-level contextual features. These fea-
tures are then processed through backward warping, guided
by the intermediate flows. The refinement stage involves a
U-net shaped network, which can enhance the output frame
in a residual form, using the warped features and flows.

B. Model Loss
We use the same training loss with EMA-VFI [37], which
is the combination of Laplacian loss and warp loss, defined
as:

L = Llap + λ
∑
i

Li
warp , (12)

where λ is the loss weight for warp loss. Following [37],
we set λ = 0.5.

C. Generalizability
We apply our sparse global matching block on RIFE[9] and
EMA[37] to show that our two-step strategy is applicable in
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{0, 1, 2, 3} is the extracted local feature, corresponding to the fea-
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3×3 Conv, stride=1

PReLU

$!, $" &!$, &"$

DownSample

Concat

×4

UpSample

()!→#, ()!→$, +,

Figure A6. Model Structure of the Initial Flow Estimation Block.

more similar flow-based structures. The result is presented
in Table A7 and Table A6 accordingly.

D. Scalability
We scaled our model to a bigger model size with 59.3M pa-
rameters, basically aligned with EMA-VFI-base [37] which
has 65.7M parameters. Results listed in Table D8. From
Table D8, we can draw the following conclusion.

As more points are incorporated into sparse global
matching, the performance gradually saturates. This ob-
servation is intuitive, considering that not every aspect of
the initial estimated flow is inaccurate, nor is every aspect
of the global matching flow entirely precise. This is evi-
denced by Table 5, where the merge block is absent in this
ablation. However, upon integrating the merge block (re-
fer to Table 3), with more points are involved, up to full
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Table A6. Results after applying sparse global matching block on EMA-VFI-small. 1/N means that we sparsely select 1/N points of
the initial intermediate flows estimation.

X-Test-L SNU-FILM-L Xiph-L

2K 4K hard extreme 2K 4K

EMA-VFI 29.51/0.8775 28.60/0.8733 28.57/0.9189 23.18/0.8292 30.54/0.8718 28.40/0.8109
EMA-VFI-1/8 29.65/0.8788 28.77/0.8753 28.62/0.9192 23.31/0.8306 30.59/0.8712 28.61/0.8114
EMA-VFI-1/4 29.81/0.8816 28.91/0.8776 28.68/0.9196 23.41/0.8326 30.64/0.8720 28.78/0.8128
EMA-VFI-1/2 30.12/0.8886 29.24/0.8840 28.70/0.9196 23.46/0.8343 30.63/0.8722 28.91/0.8146

Table A7. Results after applying sparse global matching block on RIFE. 1/N means that we sparsely select 1/N points of the initial
intermediate flows estimation.

X-Test-L SNU-FILM-L Xiph-L

2K 4K hard extreme 2K 4K

RIFE 29.87/0.8805 28.98/0.8756 28.19/0.9172 22.84/0.8230 30.18/0.8633 28.07/0.7982
RIFE-1/8 30.50/0.8902 29.52/0.8838 28.61/0.9189 23.35/0.8298 30.26/0.8637 28.45/0.8023
RIFE-1/4 30.68/0.8981 29.72/0.8901 28.63/0.9191 23.52/0.8340 30.30/0.8643 28.66/0.8048
RIFE-1/2 30.88/0.9034 29.90/0.8944 28.66/0.9195 23.52/0.8350 30.35/0.8656 28.69/0.8066

Table D8. Results on a larger local branch. Note that we disable
the test-time augmentation when testing for direct comparison.

XTest-L-2K

PSNR SSIM

EMA-VFI [37] 30.85 0.9005

Ours-local branch 30.68 0.9010

Ours-1/8-Points 31.10 0.9080
Ours-1/4-Points 31.19 0.9102
Ours-1/2-Points 31.27 0.9115

Full Global Matching 31.20 0.9104

global matching, performance still has a little improvement
with increased point involvement, meaning that there is still
potential for enhancement within the local branch of the
smaller model with the help of our merge block.

But when we change our model with a larger local
branch with more parameters, the capacity of the local
branch becomes stronger. Consequently, it becomes evi-
dent that involving all points in global matching leads to
performance degradation compared to utilizing only half the
points, thus affirming our pursuit of sparsity.

E. Model Size Comparisons
We conduct a series of parameters and runtime comparisons
on an Nvidia RTX 2080Ti GPU. Illustrated in Table E9, our
local branch is aligned with EMA-VFI-small in terms of
runtime and parameters, therefore, we mainly compare our

Table E9. Comparisons of model size and corresponding per-
formance. We only list the X-Test-L-2K results for simplicity.

Inference Time on
512x512 Resolution Parameters X-Test-L-2K

PSNR SSIM

RIFE 10ms 10M 29.87 0.8805
EMA-VFI-small 25ms 14.5M 29.51 0.8775
EMA-VFI-base 132ms 65.7M 30.85 0.9003

XVFI 22ms 5.6M 29.82 0.8493
BiFormer 59ms 11M 30.32 0.9067

Ours-local-branch 23ms 15.4M 30.39 0.8946
Ours-1/2-Points 74ms 20.8M 30.99 0.9075

results with EMA-VFI-small model setting.

F. Different Flow Reversal Teqniques

Table F10. Comparisons between different flow reversal tech-
niques.

X-Test-L-2K X-Test-L-4K

PSNR SSIM PSNR SSIM

flow reversal layer [35] 30.57 0.8977 29.45 0.8886
CFR [29] 30.73 0.9001 29.63 0.8913

linear combination [13] 30.69 0.9000 29.59 0.8907
CNN layer 30.18 0.8932 29.13 0.8853

linear reversal 30.70 0.9017 29.59 0.8924
flow shift (Ours-1/8-Points) 30.83 0.9022 29.73 0.8928

We compare our flow shift strategy with the flow rever-
sal layer in [35], complementary flow reversal in [29], lin-
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Table G11. 8× Interpolation Results on X-Test (PSNR).

X-Test (8× interpolation)

2K 4K

EMA-VFI-small-t [37] 31.89 30.89
RIFE-m [9] 31.43 30.58
FILM [27] 31.50 OOM

Ours-1/2-Points 32.38 31.35

Table H12. Comparisons between from scratch and finetuning.

X-Test-L-2K X-Test-L-4K

PSNR SSIM PSNR SSIM

Ours-local-branch 30.39 0.8946 29.25 0.8861
Global-From Scratch 30.63 0.9012 29.61 0.8958

Global-Finetuning 31.03 0.9074 29.95 0.8974

ear combination in [13], CNN layer and linear reversal on
Ours-1/8 setting. Shown by Table F10, our flow-shifting
strategy is the most suitable for sparsely sampled flows.

G. Interpolating multiple frames into two
frames

We follow the recursive interpolation method in FILM [27]
and present our multi-frame interpolation (between two
frames) results in Table G11.

H. Finetuning or Training From Scratch
In our experiments, we conducted training from scratch on
the Vimeo-90K [4] dataset using a sparse global matching
block with full global matching. This approach still demon-
strated noticeable effects attributed to the global matching
process. However, as indicated in Table H12, the abil-
ity to capture large motion was not on par with the re-
sults obtained after finetuning on a dataset with larger mo-
tion. Therefore, finetuning on a small batch of large mo-
tion datasets (X-Train) is more efficient than training from
scratch on a large batch of small motion datasets (Vimeo-
90K). This efficiency is evidenced by the reduced num-
ber of required training steps, with finetuning necessitat-
ing only 13.7k steps as opposed to 480k steps for training
from scratch. This finding aligns with the observations re-
ported in FILM [27], suggesting that large motion datasets
can bring large motion capturing ability.

I. Failed Matching
When matching fails, the merge block in our method can
adaptively merge the flows, depressing the impact of match-
ing failure. Moreover, we have a refine block to further re-

Merge
Block

Refine
Block

-#, -$ )!→$%!
(Ground Truth

Estimated by RAFT [29])

)!→$&'()*')!→$

.!→$
(Flow Shifting Output)

()!→$
(Initial Intermediate Flow)

* Visualization Using Ours-1/4-Points (Cropped Window)

Figure I7. Visualization of Matching Failure and Repair

Operations Inference Time

Local Feature Branch 23 ms

Flow Compensation Branch 50.6 ms
- Global Feature Extraction 45 ms
- Others 5.6 ms

(512× 512 Resolution) Total 73.6ms

Table J13. Time Profile on Our Proposed Algorithm. Measured
on an Nvidia RTX 2080Ti GPU.

pair the merged flow. We also provide a visualization in
Figure I7.

J. Inference Speed Bottleneck
As shown in Table J13, the bottleneck of our pipeline lies
in the global feature extractor, instead of other parameter-
free components. One naive solution is to replace it with
a simpler and lighter global feature extractor in the future.
And another solution is to distill the global feature extrac-
tion ability from GMFlow [34] to our own feature extractor,
which needs more experiment and probably even training
data from optical flow datasets.
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